面积的计算公式
圆形面积公式:S=π.r2。扇形面积公式:S=nπ.r2/360。菱形面积公式:S=(axb)+2。长方形面积公式:S=axb。正方形面积公式:S=a2。
常见面积定理
1、一个图形的面积等于它的各部分面积的和;
2、两个全等图形的面积相等;
3、等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底的和相等)的面积相等;
4、等底(或等高)的三角形、平行四边形、梯形的面积比等于其所对应的高(或底)的比;
5、相似三角形的面积比等于相似比的平方;
6、等角或补角的三角形面积的比,等于夹等角或补角的两边的乘积的比;等角的平行四边形面积比等于夹等角的两边乘积的比;
7、任何一条曲线都可以用一个函数y=f(x)来表示,那么,这条曲线所围成的面积就是对X求积分。
数学面积计算公式大全
长方形=长*宽
平行四边形=长*高
三角形=长*高/2
正方形=边长*边长
圆=圆周率*半径的平方
这些是小学的,我已经挖空心思了,
我是六年级的
又找了一些:
我给的确实是初中的数学定理和公式大全,楼主看不懂问题不在这里,建议楼主先从基础知识抓起,光记公式而不理解是不行的,介绍
几个初中生学习网站初中数学资源网
初中数学网
初中数学乐园
华师大初中数学网站
中学数学题库
这是初中的代数公式:
初中数学常用公式:
初中数学公式,这个需要下载:
常用数学公式表:
?tid=740
另外关于学习方法的:(那个同学跟你的情况有点类似吧)
希望对你有帮助,
1过两点有且只有一条直线
2两点之间线段最短
3同角或等角的补角相等
4同角或等角的余角相等
5过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短
7平行公理经过直线外一点,有且只有一条直线与这条直线平行
8如果两条直线都和第三条直线平行,这两条直线也互相平行
9同位角相等,两直线平行
10内错角相等,两直线平行
11同旁内角互补,两直线平行
12两直线平行,同位角相等
13两直线平行,内错角相等
14两直线平行,同旁内角互补
15定理三角形两边的和大于第三边
16推论三角形两边的差小于第三边
17三角形内角和定理三角形三个内角的和等于180°
18推论1直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和
20推论3三角形的一个外角大于任何一个和它不相邻的内角
21全等三角形的对应边、对应角相等
22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
25边边边公理(SSS)有三边对应相等的两个三角形全等
26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
27定理1在角的平分线上的点到这个角的两边的距离相等
28定理2到一个角的两边的距离相同的点,在这个角的平分线上
29角的平分线是到角的两边距离相等的所有点的集合
30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33推论3等边三角形的各角都相等,并且每一个角都等于60°
34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35推论1三个角都相等的三角形是等边三角形
36推论2有一个角等于60°的等腰三角形是等边三角形
37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38直角三角形斜边上的中线等于斜边上的一半
39定理线段垂直平分线上的点和这条线段两个端点的距离相等
40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42定理1关于某条直线对称的两个图形是全等形
43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
48定理四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×180°
51推论任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等
53平行四边形性质定理2平行四边形的对边相等
54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分
56平行四边形判定定理1两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3对角线互相平分的四边形是平行四边形
59平行四边形判定定理4一组对边平行相等的四边形是平行四边形
60矩形性质定理1矩形的四个角都是直角
61矩形性质定理2矩形的对角线相等
62矩形判定定理1有三个角是直角的四边形是矩形
63矩形判定定理2对角线相等的平行四边形是矩形
64菱形性质定理1菱形的四条边都相等
65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1四边都相等的四边形是菱形
68菱形判定定理2对角线互相垂直的平行四边形是菱形
69正方形性质定理1正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1关于中心对称的两个图形是全等的
72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
80推论2经过三角形一边的中点与另一边平行的直线,必平分第
81三角形中位线定理三角形的中位线平行于第三边,并且等于它
82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的
一半L=(a+b)÷2S=L×h
83(1)比例的基本性质如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86平行线分线段成比例定理三条平行线截两条直线,所得的对应
线段成比例
87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91相似三角形判定定理1两角对应相等,两三角形相似(ASA)
92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
94判定定理3三边对应成比例,两三角形相似(SSS)
95定理如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96性质定理1相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97性质定理2相似三角形周长的比等于相似比
98性质定理3相似三角形面积的比等于相似比的平方
99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理一条弧所对的圆周角等于它所对的圆心角的一半
117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理圆的内接四边形的对角互补,并且任何一个外角都等于它
121①直线L和⊙O相交d<r
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理圆的切线垂直于经过切点的半径
124推论1经过圆心且垂直于切线的直线必经过切点
125推论2经过切点且垂直于切线的直线必经过圆心
126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理弦切角等于它所夹的弧对的圆周角
129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积
131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离d>R+r②两圆外切d=R+r
③两圆相交R-r<d<R+r(R>r)
④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)
136定理相交两圆的连心线垂直平分两圆的公共弦
137定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2p表示正n边形的周长
142正三角形面积√3a/4a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长=d-(R-r)外公切线长=d-(R+r)
(还有一些,大家帮补充吧)
实用工具:常用数学公式
公式分类公式表达式
乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理
b2-4ac=0注:方程有两个相等的实根
b2-4ac>0注:方程有两个不等的实根
b2-4ac<0注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h
正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2
圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l
弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h
斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长
柱体体积公式V=s*h圆柱体V=pi*r2h
平方面积公式怎么算?
面积 = 长 × 宽。
1、长方形:S=axb,{长方形面积=长×宽}
2、正方形:S=axa{正方形面积=边长x边长),平行四边形:S=ah{平行四边形面积=底×高}
3、三角形:S=axb+2(三角形面积=底x高+2)。
4、长方体表面积:S=2 x(ab+ac+bc),{长方体表面积=(长×宽+长x高+宽x高)×2}。
平方米(㎡,法文:mètre carré,英式英文:square metre,美式英文:square meter),是面积的国际单位。是生活和工作中常用的测量方式标准。定义:边长为1米的正方形的面积被定义为1平方米,一块任意形状的平面的面积如果等效于边长为1米的正方形的面积也称为1平方米。
平方米换算:
1、常用土地面积面积单位换算换算公式 1亩=60平方丈=6000平方尺,1亩=666.6平方米
2、平方米换为亩,计算口诀为"加半左移三"。1平方米=0.0015亩,如128平方米等于多少亩?计算方法是先用128加128的一半:128+64=192,再把小数点左移3位,即得出亩数为0.192。
3、亩换平方米,计算口诀为"除以三加倍右移三"。如要计算24.6亩等于多少平方米,24.6÷3=8.2,8.2加倍后为16.4,然后再将小数点右移3位,即得出平方米数为16400。正方形面积计算是:边长×边长=正方形面积;
长方形面积计算是:长×宽=长方形面积;
梯形面积计算是:(上底+下底)×高÷2=梯形面积;
三角形面积计算是:底×高÷2=三角形面积;
圆面积计算是:半径×半径×π(3.14)=圆面积。
计算时,长度单位是米,那么计算结果就是平方米。平方:通俗的说就是两个相同的数相乘得到的值。
面积:物体的形状不同,其面积计算公式亦不同。
以下是各种常见图形面积计算最常用的公式
三角形面积:底乘高除以2
正三角形面积:0.866乘以边长的平方
矩形面积:长乘宽
正方形面积:边长的平方
梯形面积:上底加下底乘高除以2
椭圆形面积:长短轴之积乘3.14除以2
圆形面积:半径的平方乘3.14 很高兴能帮你前往百度APP查看
亲,晚上好!有什么可以帮到你的吗?
你想问的是计算什么图形的面积呢?
求各种面积计算公式
各种图形面积公式:
1、长方形=长×宽
2、正方形=边长×边长
3、平行四边形=底×高
4、三角形=底×高÷2
5、梯形=(上底+下底)×高÷2
6、圆=πr²
7、圆环=π(R²-r²)
8、扇形=πr2×(a/360);r为扇形半径 a为圆心角度数
扩展资料:
立体图形体积计算公式:
1、正方体=边长×边长×边长
2、长方体=长×宽×高
3、棱柱=底面积×高
4、棱锥=底面积×高÷3
5、棱台=V=h[S1+S2+(S1S1)1/2]/3;S1和S2为上、下底面积,h为高
6、圆柱=底面积×高(底面积=πr²)
7、球=4/3πr3=πd2/6;r为半径,d为直径
参考资料:面积公式-百度百科长方形(矩形): S=ab{长方形面积=长×宽}
正方形:S=a^2 {正方形面积=边长×边长}
平行四边形:S=ab {平行四边形面积=底×高}
三角形:
{三角形面积=底×高÷2}
{梯形面积=(上底+下底)×高÷2}
圆形(正圆):
{圆形(正圆)面积=圆周率×半径×半径}
{圆形(外环)面积={圆周率×(外环半径^2-内环半径^2)}
{圆形(扇形)面积=圆周率×半径×半径×扇形角度/360}
长方体表面积:
{长方体表面积=(长×宽+长×高+宽×高)×2}
(其中π(圆周率,a,b分别是椭圆的长半轴,短半轴的长).
面积是表示平面中二维图形或形状或平面层的程度的数量。表面积是三维物体的二维表面上的模拟物。面积可以理解为具有给定厚度的材料的量,面积是形成形状的模型所必需的,或者用单一涂层覆盖表面所需的涂料量。它是曲线长度(一维概念)或实体体积(三维概念)的二维模拟。
有几种众所周知的简单形状的公式,如三角形,矩形和圆形。使用这些公式,可以通过将多边形分成三角形来找到任何多边形的面积。对于具有弯曲边界的形状,通常需要微积分来计算面积。事实上,确定飞机数字面积的问题是演算历史发展的主要动机。
对于诸如球体,锥体或圆柱体的实体形状,其边界面的面积被称为表面积,简单形状的表面区域的公式由古希腊人计算,但计算更复杂形状的表面积通常需要多变量微积分。
参考资料搜狗百科-面积长方形面积=长×宽
正方形面积=边长×边长
平行四边形面积=底×高
三角形面积=底×高÷2
梯形面积=(上底+下底)×高÷2
圆面积=πr²
圆环面积=π(R²-r²)
扩展资料:
面积公式是数学公式,其中包括长方形面积公式、正方形面积公式、扇形面积公式,圆形面积公式,弓形面积公式,菱形面积公式,三角形面积公式,梯形面积公式等多种图形的面积公式。
1 圆公式
设圆半径为 :r, 面积为 :S .
则 面积 S= π·r^2 ; π 表示圆周率
即 圆面积 等于 圆周率 乘以 圆半径的平方
2 弓形公式
设弓形AB所对的弧为弧AB,那么:
当弧AB是劣弧时,那么S弓形=S扇形-S△AOB(A、B是弧的端点,O是圆心)。
当弧AB是半圆时,那么S弓形=S扇形=1/2S圆=1/2×πr^2。
当弧AB是优弧时,那么S弓形=S扇形+S△AOB(A、B是弧的端点,O是圆心)
计算公式分别是:
S=nπR^2÷360-ah÷2
S=πR^2/2
S=nπR^2÷360+ah÷2
3 椭圆公式
椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
椭圆面积公式应用实例
椭圆的长半轴为8cm,短半轴为6cm,假设π=3.14,求该椭圆的面积
答:S=πab=3.14*8*6=150.72(cm²)
参考资料:搜狗百科-面积公式1、扇形公式
在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR^2,所以圆心角为n°的扇形面积:
2、扇环面积
圆环面积:外圆面积-内圆面积(圆周率X大半径的平方-圆周率X小半径的平方\圆周率X(大半径的平方-小半径的平方)
3、三角形公式
任意三角形的面积公式(海伦公式):S^2=p(p-a)(p-b)(p-c), p=(a+b+c)/2, a.b.c为三角形三边。
4、圆公式
设圆半径为 :r, 面积为 :S .
则 面积 S= π·r^2 ; π 表示圆周率
即 圆面积 等于 圆周率 乘以 圆半径的平方
5、弓形公式
设弓形AB所对的弧为弧AB,那么:
当弧AB是劣弧时,那么S弓形=S扇形-S△AOB(A、B是弧的端点,O是圆心)。
当弧AB是半圆时,那么S弓形=S扇形=1/2S圆=1/2×πr^2。
当弧AB是优弧时,那么S弓形=S扇形+S△AOB(A、B是弧的端点,O是圆心)
6、椭圆面积公式
S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
7、菱形公式
菱形面积=对角线乘积的一半,即S=(a×b)÷2
菱形的面积也可=底乘高
8、正方形公式
正方形由四条边构成,四条边相等,其面积公式为
其中S为正方形面积,a为正方形边长。
9、平行四边形公式
平行四边形是由两组平行线段组成的闭合图形。其面积公式为
其中S为平行四边形面积,a为平行四边形的底,h为平行四边形的高。
扩展资料:
面积公式是数学公式,其中包括长方形面积公式、正方形面积公式、扇形面积公式,圆形面积公式,弓形面积公式,菱形面积公式,三角形面积公式,梯形面积公式等多种图形的面积公式。
参考资料:面积公式-百度百科长方形面积=长×宽
正方形面积=边长×边长
平行四边形面积=底×高
三角形面积=底×高÷2
梯形面积=(上底+下底)×高÷2
圆面积=πr²
圆环面积=π(R²-r²)