三角形的中线(三角形中线概念)

三角形的中线怎么求

三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方的和的2倍。

即,对任意三角形△ABC,设是I线段BC的中点,AI为中线,则有如下关系:

AB^2+AC^2=2BI^2+2AI^2

或作AB^2+AC^2=

(BC)^2+2AI^2

通过两式相减,还可以得到|AB^2-AC^2|=2BC*IH。(H为垂足)

扩展资料:

中线定理即为斯台沃特定理在中点时的结论,可由斯台沃特定理直接得出,但是斯台沃特定理不容易理解。下面有四种比较容易理解的方法。

特殊点、线:五心、四圆、三点、一线:这些是三角形的全部特殊点,以及基于这些特殊点的相关几何图形。“五心”指重心、垂心、内心、外心和旁心;“四圆”为内切圆、外接圆、旁切圆和欧拉圆;“三点”是勒莫恩点、奈格尔点和欧拉点;“一线”即欧拉线。

三角形的稳定性使其不像四边形那样易于变形,有着稳定、坚固、耐压的特点。三角形的结构在工程上有着广泛的应用。许多建筑都是三角形的结构,如:埃菲尔铁塔,埃及金字塔等等。

参考资料:

百度百科---中线定理

三角形的中线

三角形的中线怎么求

三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方的和的2倍。

即,对任意三角形△ABC,设是I线段BC的中点,AI为中线,则有如下关系:

AB^2+AC^2=2BI^2+2AI^2

或作AB^2+AC^2=

(BC)^2+2AI^2

通过两式相减,还可以得到|AB^2-AC^2|=2BC*IH。(H为垂足)

扩展资料:

中线定理即为斯台沃特定理在中点时的结论,可由斯台沃特定理直接得出,但是斯台沃特定理不容易理解。下面有四种比较容易理解的方法。

特殊点、线:五心、四圆、三点、一线:这些是三角形的全部特殊点,以及基于这些特殊点的相关几何图形。“五心”指重心、垂心、内心、外心和旁心;“四圆”为内切圆、外接圆、旁切圆和欧拉圆;“三点”是勒莫恩点、奈格尔点和欧拉点;“一线”即欧拉线。

三角形的稳定性使其不像四边形那样易于变形,有着稳定、坚固、耐压的特点。三角形的结构在工程上有着广泛的应用。许多建筑都是三角形的结构,如:埃菲尔铁塔,埃及金字塔等等。

参考资料:

百度百科---中线定理

三角形的中线都有什么定义

连接三角形一个顶点与对边中点的线段叫做三角形的中线。共可以做3条中线。且三条中线交于一点。这点称为三角形的重心。中线是边的中点与对角的的连线

三角形的中线

三角形中线概念

三角形的中线是三角形的顶点与对边中点的连线是三角形的中线1.三角形中线定义:连结三角形一个顶点和对边中点的线段;

2.三角形中线能将三角形分成面积相等的两部分;

3.三角形的三条中线必交于一点,该交点为三角形重心;

4.重心定理:三角形重心到一个顶点的距离等于它到对边中点距离的2倍;

5.三角形三条中线能将三角形分成面积相等的六部分;

6.解决三角形中线问题,常作的辅助线是倍长中线,塑造全等三角形,或平行四边形;

7.遇到三角形两条中线同时出现时,常需考虑三角形中位线:三角形中位线平行且等于第三边一半;

8.直角三角形斜边上的中线等于斜边的一半;

9.如果三角形一边中线等于这边的一半,那么这个三角形是直角三角形;

10.等边三角形顶角平分线,底边上的高,底边上的中线,互相重合;

11.若ad是△abc的中线,则向量ab+向量ac=2*向量ad

留言与评论(共有 0 条评论)
   
验证码: