韦达定理计算
什么是韦达定理?韦达定理的推导过程,用一元二次方程求根公式
韦达定理的推导公式
ax^2+bx+c=0x^2 +b/a x +c/a = 0(x+ b/(2a) )^2 +c/a -b^2/(4a^2) = 0(x+ b/(2a) )^2 =b^2/(4a^2) - c/ax+b/(2a) = +或- √[b^2/(4a^2) - c/a ]y1 = -b/(2a) + √[b^2/(4a^2) - c/a ] = [-b + √(b^2-4ac)] /(2a)y2 = -b/(2a) - √[b^2/(4a^2) - c/a ] = [-b - √(b^2-4ac)] /(2a)
韦达定理公式
二次方程为
ax²+bx+c=0
判别式△=b²-4ac≥0
两根之和为 x1+x2=-b/a
两根之积为 x1x2=c/a一元二次方程ax^2+bx+c (a不为0)中
设两个根为x和y
则x+y=-b/a
xy=c/a
韦达定理在更高次方程中也是可以使用的。一般的,对一个n次方程∑aix^i=0
它的根记作x1,x2…,xn
∑xi=(-1)^1*a(n-1)/a(n)
∑xixj=(-1)^2*a(n-2)/a(n)
∏xi=(-1)^n*a(0)/a(n)
其中∑是求和,∏是求积。
如果一元二次方程
在复数集中的根是,那么
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
由代数基本定理可推得:任何一元 n 次方程
在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:
其中是该方程的个根。两端比较系数即得韦达定理。
韦达定理在方程论中有着广泛的应用。
定理的证明
设x_1,x_2是一元二次方程ax^2+bx+c=0的两个解,且不妨令x_1 \ge x_2。根据求根公式,有
x_1=\frac{-b + \sqrt {b^2-4ac}},x_2=\frac{-b - \sqrt {b^2-4ac}}
x_1+x_2=\frac{-b + \sqrt {b^2-4ac} + \left (-b \right) - \sqrt {b^2-4ac}} =-\frac,
x_1x_2=\frac{ \left (-b + \sqrt {b^2-4ac} \right) \left (-b - \sqrt {b^2-4ac} \right)}{\left (2a \right)^2} =\frac韦达定理说明了一元n次方程中根和系数之间的关系。 这里讲一元二次方程两根之间的关系。 一元二次方程ax²+bx+c=0中,两根x1,x2有如下关系: x1+ x2=-b/a , x1·x2=c/a.
韦达定理的公式
英文名称:Viete theorem
韦达定理说明了一元n次方程中根和系数之间的关系。
这里主要讲一下一元二次方程两根之间的关系。
一元二次方程ax^2+bx+c=中,两根X1,X2有如下关系:x1+x2=-b/a; X1*X2=c/a.
韦达定理(Vieta's Theorem)的内容
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1+X2= -b/a
X1*×2=c/a
用韦达定理判断方程的根
若b²-4ac>0 则方程有两个不相等的实数根
若b²-4ac=0 则方程有两个相等的实数根
若b²-4ac≥0则方程有实数根
若b²-4ac<0 则方程没有实数解
韦达定理的推广
韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0
它的根记作X1,X2…,Xn
我们有
∑Xi=(-1)^1*A(n-1)/A(n)
∑XiXj=(-1)^2*A(n-2)/A(n)
∏Xi=(-1)^n*A(0)/A(n)
其中∑是求和,∏是求积。
如果一元二次方程
在复数集中的根是,那么
由代数基本定理可推得:任何一元 n 次方程
在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:
其中是该方程的个根。两端比较系数即得韦达定理。
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
韦达定理在方程论中有着广泛的应用。
(x1-x2)的绝对值为(根号下b^2-4ac)/(a的绝对值)
韦达定理推广的证明
设x1,x2,……,xn是一元n次方程∑AiX^i=0的n个解。
则有:An(x-x1)(x-x2)……(x-xn)=0
所以:An(x-x1)(x-x2)……(x-xn)=∑AiX^i (在打开(x-x1)(x-x2)……(x-xn)时最好用乘法原理)
通过系数对比可得:
A(n-1)=-An(∑xi)
A(n-2)=An(∑xixj)
A0=[(-1)^n]*An*∏Xi
所以:∑Xi=[(-1)^1]*A(n-1)/A(n)
∑XiXj=[(-1)^2]*A(n-2)/A(n)
∏Xi=[(-1)^n]*A(0)/A(n)
其中∑是求和,∏是求积。
希望对你有帮助,祝愉快。